Меню Рубрики

Как снизить фосфор народными средствами

Выбор фосфат-связывающего препарата для лечения гиперфосфатемии при хронической болезни почек: эффекты на кальцификацию артерий и смертность

Опубликовано в журнале, Клиническая Фармакология и Терапия, 2012, 21 Ю.С.Милованов, Л.Ю.Милованова, С.В.Моисеев
Первый МГМУ им. И.М.Сеченова

Гиперфосфатемия у больных хронической болезнью почек (ХБП) не только играет важную роль в развитии поражения костной ткани, но и увеличивает риск смерти от любых и сердечно-сосудистых причин. Результаты контролируемых клинических исследований показали, что фосфат-связывающие препараты, не содержащие кальций, могут задерживать развитие кальцификации коронарных и других артерий и улучшать выживаемость у преддиализных и диализных больных ХБП.

Ключевые слова. Гиперфосфатемия, минеральные и костные нарушения, хроническая болезнь почек, фосфат-связывающие препараты, севеламер.

Сердечно-сосудистые заболевания — это одна из ведущих причин смертности больных с терминальной почечной недостаточностью. Риск смерти от сердечно-сосудистых причин с поправкой на возраст, расу, пол и наличие сахарного диабета у больных, получающих почечную заместительную терапию, в 10-20 раз выше, чем в общей популяции [1]. По данным коронарной ангиографии, значительное снижение скорости клубочковой фильтрации ассоциируется с достоверным увеличением частоты тяжелого коронарного атеросклероза, в том числе с поражением трех коронарных артерий и ствола левой коронарной артерии [2]. Помимо традиционных факторов риска, таких как артериальная гипертония, курение, сахарный диабет и др., важную роль в развитии сердечно-сосудистых заболеваний у пациентов с хронической болью почек (ХБП) играют дополнительные факторы риска, в частности минеральные и костные нарушения (МКН), которые в терминальной стадии встречаются практически у всех больных. В соответствии с рекомендациями KDIGO [3] МКН-ХБП представляют собой системное состояние, которое характеризуется не только нарушением обмена кальция, фосфора, витамина D, паратиреоидного гормона (ПТГ) и поражением костной ткани, но и распространенной кальцификацией коронарных и других артерий, вызывающей повышение сердечно-сосудистой и общей смертности [4]. Ключевую роль в развитии

МКН-ХБП играют задержка фосфатов и гиперфосфатемия [5]. В многочисленных исследованиях установлена связь между повышением сывороточных уровней фосфора и смертностью больных ХБП [6]. Например, в исследовании у 40538 американцев, находящихся на лечении гемодиализом, была выявлена U-образная связь между исходным сывороточным уровнем фосфора и риском смерти от любых причин [7]. Увеличение сывороточного уровня фосфора на 1 мг/дл сопровождалось повышением риска от любых и сердечно-сосудистых причин на 4% и 9%, соответственно [8]. В современных рекомендациях указывается на необходимость нормализации сывороточных уровней фосфатов у больных ХБП 3-5 стадии, в том числе получающих лечение диализом [9]. С этой целью применяют фосфат-связывающие препараты, содержащие и не содержащие кальций, которые обладают сопоставимой эффективностью в лечении гиперфосфатемии, но могут отличаться по влиянию на сывороточный уровень кальция и развитие кальцификации сосудов и, соответственно, сердечно-сосудистых исходов.

Патогенез гиперфосфатемии и кальцификации сосудов при ХБП
Обмен фосфора и кальция в организме в основном регулируется ПТГ, который увеличивает выведение фосфатов с мочой, и активным метаболитом витамина D — 1,25-дигидроксивитамином D3 (кальцитриолом), активирующим рецепторы витамина D и усиливающим всасывание фосфатов в кишечнике [10]. В последние годы идентифицированы другие факторы (фосфатонины), которые также контролируют почечную экскрецию фосфатов [11]. Одним из таких гормонов является фактор роста фибробластов-23 (FGF-23), выделяющийся остеоцитами. Он снижает экспрессию натрий-зависимых ко-транспортеров фосфатов 2а типа (NaPi-2a) в клетках проксимальных почечных канальцев и активность 1а-гидроксилазы, превращающей 25-гидроксивитамин D3 в кальцитриол [12]. Действие FGF-23 опосредуется Klotho беками, которые образуют комплекс с FGF-рецепторами и выступают в роли облигатных корецепторов [13,14]. Klotho белки экспрессируются в дистальных собирательных канальцах, но оказывают первичное действие в клетках про ксимальных почечных канальцев. Klotho белки синтезируются также в ткани паращитовидных железах. ПТГ и Klotho белки повышают секрецию FGF-23 остеоцитами, в то время как FGF-23 ингибирует выделение ПТГ.

Уже на ранних стадиях ХБП происходит задержка фосфатов вследствие постепенного снижения их клиренса почками [5]. Развитию гиперфосфатемии препятствует увеличение секреции FGF-23 и ПТГ, которые подавляют реабсорбцию фосфатов в почках и их всасывание в кишечнике (вследствие уменьшения образования кальцитриола). Если в норме FGF-23 снижает секрецию ПТГ, то при нарушении функции почек развивается резистентность к его действию вследствие снижения экспрессии Klotho белков в паращитовидных железах и почках. По мере прогрессирующего снижения массы функционирующих клубочков эти гомеостатические механизмы уже не позволяют поддерживать нормальные сывороточные уровни фосфатов, что приводит к развитию гиперфосфатемии несмотря на высокие уровни ПТГ и FGF-23.

Гиперфосфатемия часто встречается у больных терминальной почечной недостаточностью. По данным международного исследования, проводившегося в 2005 году в репрезентативных выборках диализных пациентов в 7 странах (Франции, Германии, Италии, Японии, Испании, Великобритании и США), распространенность гиперфосфатемии существенно не отличалась и составила 49,4% в странах Европы и 53,6% в Японии, хотя большинство пациентов получали фосфат-связывающие препараты [8]. Тем не менее, в исследовании DOPPS в последние годы было отмечено снижение частоты гиперфосфатемии у больных терминальной почечной недостаточностью [15].

Изменения обмена минералов при ХБП приводят к развитию почечной остеодистрофии, которая характеризуется повышенной резорбцией костной ткани и нарушением ее образования и минерализации. Классический гистологический признак почечной остеодистрофии — фиброзный остеит, который сопровождается усилением ремоделирования костной ткани и фиброзом костного мозга. Почечная остеодистрофия проявляется переломами, болями в костями, деформацией костей и задержкой роста у детей.

К характерным проявлениям МКН-ХБП относят также эктопическую кальцификацию — отложение фосфата кальция в артериях, клапанном аппарате сердца, миокарде, а также мягких тканяз, которое ускоряется по мере снижения массы действующих нефронов и встречается у пациентов с ХБП значительно чаще, чем в общей популяции. Первоначально считали, что кальфикация представляет собой пассивную преципитацию фосфата кальция при увеличении концентрации ионов кальция и фосфатов в сыворотке. Однако позднее было установлено, что кальцификация сосудов — это активный процесс, в основе которого лежит трансформация гладкомышечных клеток в остеобласт-подобные клетки, которая происходит в результате взаимодействия различных факторов, включая гиперфосфатемию, уре мические токсины и реактивные кислородные радикалы, а также снижение экспрессии ингибирующих белков, таких как матриксный Gla белок и фетуин А [16]. Повышение сывороточных уровней фосфатов и Ca X P у больных с терминальной почечной недостаточностью тесно ассоциировались с выраженностью кальцификации артерий, а инкубация гладкомышечных клеток с раствором фосфатов вызывала их дифференцировку в остеобласт-подобные клетки. Определенный вклад в развитие уремической артериопатии вносит нарушение защитного эффекта FGF-23 в отношении сосудов, которое частично связано со снижением экспрессии Klotho белков.

Кальцификация сосудов может происходить в области как внутренней, так и средней (мышечной) оболочки артерий. В первом случае она способствует ускоренному развитию атеросклеротического процесса, который лежит в основе развития стенокардии, инфаркта миокарда и инсульта. Во втором случае кальцификация повышает ригидность стенок артерий, вызывает увеличение скорости пульсовой волны и пульсового давления и в конечном итоге приводит к гипертрофии левого желудочка и сердечной недостаточности, а также способствует развитию коронарной недостаточности [9]. Более редкой, но тяжелой формой кальцификации мышечной стенки мелких артерий является кальцифилаксия, или кальцифицирующая уремическая артериопатия, которая характеризуется развитием болезненных ишемических язв кожи и бактериальных суперинфекций. Кальцификация сосудов часто сопровождается кальцификацией клапанов сердца [17].

Диагностика кальцификации артерий
Самыми надежными методами оценки кальфикации артерий считают электронно-лучевую и мультиспиральную компьютерную томографию. Тяжесть кальцификации коронарных артерий определяют по шкале Агатсона с учетом плотности и площади отложения кальция. На основании этих показателей рассчитают индекс кальцификации, или кальциевый счет, как произведение плотности и площади депозитов кальция с помощью специального программного обеспечения [9]. Недостаток компьютерной томографии — высокая стоимость метода, которая препятствует его широкому применению с целью скрининга. К альтернативным методам относят измерение пульсового давления и скорости пульсовой волны, толщины комплекса интима-медия сонных артерий, рентгенографию брюшной аорты в боковой проекции, эхокардиографию (кальциноз клапанов). В одном исследовании корреляция между пульсовым давлением и индексом кальцификации коронарных артерий отсутствовала, в то время как кальцификация брюшной аорты и клапанов, которую оценивали с помощью обычной рентгенографии и эхо-кардиографии, соответственно, тесно коррелировала с результатами электронно-лучевой компьютерной томографии коронарных артерий [18]. Суррогатным марке ром кальцификации коронарных артерий может служить также скорость пульсовой волны, однако для ее измерения требуется специальное оборудование. В то же время толщина комплекса интима-медиа оказалась мало информативным показателем. В рекомендациях KDIGO [3] указано, что у больных ХБП 3-5Д стадии для диагностики кальцификации сосудов вместо компьютерной томографии высокого разрешения могут быть использованы рентгенография брюшной полости в боковой проекции и эхокардиография.

В тех же рекомендациях проанализированы результаты 25 исследований, в которых изучалась частота кальцификации сосудов и клапанов сердца более чем у 4000 пациентов с различными стадиями ХБП (у большинства 5Д стадии). У взрослых пациентов, получавших лечение диализом, частота кальцификации коронарных артерий составила 51-93%, а частота кальцификации клапанов сердца — 20-47%. В 8 исследованиях изучалось естественное течение кальцификации сосудов в течение 1-3 лет. В целом было показано, что кальцификация обычно прогрессирует и является независимым предиктором сердечно-сосудистой и общей смертности. Соответственно, риск развития сердечно-сосудистых исходов у больных ХБП 3-5Д стадии, у которых определяется кальцификация сосудов и/или клапанов, следует считать очень высоким [3]. Скрининг кальцификации сосудов обоснован у пациентов со стойкой гиперфосфатемией, требующей назначения фосфатсвязывающих препаратов, пациентов, находящихся в листе ожидания трансплантации почки и во всех других случаях, когда информация о наличии кальцификации или ее выраженности может иметь значение для выбора дальнейшей тактики ведения больного [9].

Методы лечения гиперфосфатемии
Основанием для контроля сывороточных уровней фосфатов у больных ХБП служат результаты эпидемиологических исследований, свидетельствующих о том, что гиперфосфатемия повышает риск смерти от любых и сердечно-сосудистых причин [19-22] и способствует развитию эктопической кальцификации сосудов, клапанов и мягких тканей [23]. Недавно в исследовании DOPPS было показано, что связь между повышением сывороточных уровней фосфора и относительным риском смерти от любых причин сопоставимая в различных странах [15]. В большинстве исследований риск смерти начинал увеличиваться при уровне фосфора, превышающем 1,6-1,8 ммоль/л [9]. Эпидемиологические данные подтверждаются результатами экспериментальных исследований, свидетельствующими о наличии прямой причинно-следственной связи между повышенными уровнями фосфатов и другими компонентами МКН-ХБП, в том числе вторичным гиперпаратиреозом, поражением костной ткани, недостаточностью кальцитриола и эктопической кальцификацией [3].

В национальном руководстве по МКН-ХБП [9] у пациентов с ХБП 3-5 стадии рекомендовано поддержи вать уровень фосфатов сыворотки крови в нормальном диапазоне (с поправкой на нормы локальной лаборатории), а у больных на диализе — стремиться к снижению уровня фосфатов до нормальных значений. Доля пациентов с уровнем фосфатов ниже 1,9 ммоль/л в диализном центре должна составлять не менее 70%. Для контроля гиперфосфатемии у больных ХБП используют диету и фосфат-связывающие препараты, а также увеличение длительности диализа. Значительное ограничение фосфора в пище необосновано у пациентов с ХБП и может привести к ухудшению их общего питания, особенно потребления белков, уменьшение которого у диализных пациентов оправдано только до известного предела (не менее 1 г/кг/сут) [9]. Тем не менее, выбору продуктов питания с меньшим содержанием фосфатов следует уделять первостепенное внимание. Гемодиализ вызывает снижение сывороточного уровня фосфора, однако он вновь быстро увеличивается после диализа (через 4 ч) вследствие перераспределения элемента из внутриклеточного пространства [24]. Учитывая периодичность лечения гемодиализом, стойкое снижение сывороточного уровня фосфора только с помощью этого метода невозможно, поэтому для адекватного контроля концентрации фосфатов необходим прием фосфат-связывающих препаратов.

К лекарственным препаратам, снижающим сывороточные уровни фосфатов, относятся (1) препараты кальция (карбонат кальция и ацетат кальция); (2) севеламера гидрохлорид (Ренагель) и севеламера карбонат (Ренвела); (3) алюминия гидроксид; (4) лантана карбонат. Самой высокой эффективностью в лечении гиперфосфатемии характеризуются препараты алюминия, однако их применение ограничивается токсичностью этого металла, проявляющейся «диализной» деменцией, нейропатией, микроцитарной анемией и остеомаляцией [9]. В прошлом основным источником алюминия, поступающего в организм пациента во время гемодиализа, была вода, используемая для приготовления диализирующего раствора. В настоящее время благодаря высокой степени очистки воды концентрация алюминия в диализирующем растворе минимальная, а в некоторых исследованиях не было отмечено его накопления при длительном применении фосфат-связывающих препаратов, содержащих алюминий [9]. Однако потенциальный риск токсичности не позволяет рекомендовать назначение подобных препаратов пациентам на диализе.

Соли кальция — это доступные и эффективные фосфат-связывающие препараты, которые широко используют для контроля гиперфосфатемии у больных ХБП. При их применении необходимо учитывать риск всасывания значительной доли поступающего в желудочно-кишечный тракт кальция. Кроме того, лечение препаратами кальция может сопровождаться повышением сывороточных уровней кальция, развитием эпизодов гиперкальциемии и снижением уровней ПТГ, а также может способствовать развитию кальциноза сосудов и мягких тканей. В связи с этим в рекомендациях

KDIGO [3] предлагается ограничивать применение препаратов кальция у пациентов со стойкой или рецидивирующей гиперкальциемией, кальцификацией артерий, адинамической болезнью костей и стойким снижением сывороточных уровней ПТГ. В национальном руководстве по МКН-ХБП [9] также не рекомендуется применение солей кальция при повышении уровня кальция более 2,6 ммоль/л (два измерения подряд) и снижении уровня ПТГ менее 100 пг/мл. Общее содержание элементарного кальция в составе фосфат-связывающих препаратов не должно превышать 1,5 г/сут, а общее потребление кальция — 2 г/сут. Для исключения эпизодов гиперкальциемии необходим более частый (ежемесячно) контроль за уровнем кальция в сыворотке.

Лантана карбонат по эффективности в лечении гиперфосфатемии не уступает препаратам кальция. Лантан частично всасывается в желудочно-кишечном тракте и может накапливаться в костной ткани.

Севеламера гидрохлорид — это наиболее изученный фосфат-связывающий препарат, не содержащий кальций. Он представляет собой полимер, который не всасывается в желудочно-кишечном тракте, не вызывает гиперкальциемию и обеспечивает контроль уровня фосфатов на фоне значительного снижения уровней общего холестерина и холестерина липопротеидов низкой плотности (ЛНП). Результаты ряда сравнительных исследований свидетельствуют о том, что севеламера гидрохлорид по эффективности по крайней мере не уступает солям кальция, но в отличие от последних может задерживать развитие кальцификации артерий и мягких тканей и улучшать отдаленные исходы у больных ХБП.

Читайте также:  Родинка болит причины народные средства

Эффекты фосфат-связывающих препаратов на кальцификацию сосудов и смертность
В подавляющем большинстве контролируемых исследований развитие кальцификации сосудов и риск неблагоприятных клинических исходов сравнивали при применении севеламера гидрохлорида и солей кальция.

Кальцификация сосудов. В 52-недельном рандомизированном открытом исследованиие Treat to Goal сравнивали влияние севеламера гидрохлорида и солей кальция (ацетата в США и карбоната в Европе) на прогрессирование кальцификации артерий у 200 пациентов, находившихся на лечении гемодиализом [25]. Во время исследования сывороточные уровни кальция, фосфора и ПТГ поддерживали в пределах целевых значений. Индекс кальцификации коронарных артерий и аорты рассчитывали с помощью электронно-лучевой компьютерной томографии. Сывороточные уровни фосфатов в конце исследования при лечении севеламером и солями кальция были сопоставимыми. В то же время при применении солей кальция была выше сывороточная концентрация кальция (р=0,002), чаще встречалась гиперкальциемия (16% и 5%, соответственно; р=0,04) и была выше доля пациентов с концентрацией интактного ПТГ ниже целевого уровня (57% и 30%; р=0,001). Через 52 недели медиана кальциевого счета значительно увеличилась в группе пациентов, получавших соли кальция, и не изменилась в группе севеламера гидрохлорида (коронарные артерии: 36,6 и 0, соответственно; р=0,03; аорта: 75,1 и 0; р=0,01). Медиана изменений кальциевого счета в коронарных артериях и аорте у пациентов с исходным его значением >30 при лечении препаратами кальция также достоверно превышала таковую при применении севеламера гидрохлорида (рис. 1).

Рис. 1. Медиана увеличения кальциевого счета в коронарных артериях (%) при применении севеламера гидрохлорида и солей кальция у диализных пациентов с исходным кальциевым счетом >30. р=0,01 через 26 недель и р=0,02 через 52 недели

В исследовании RIND сравнивали изменения кальциевого счета в коронарных артериях с помощью электронно-лучевой компьютерной томографии через 6, 12 и 18 месяцев лечения севеламером или солями кальция у 129 пациентов, начавших терапию гемодиализом [26]. Примерно у трети больных исходно отсутствовали признаки кальцификации коронарных артерий. В этой выборке ни в одном случае не было отмечено увеличения кальциевого счета >30 через 18 месяцев. У пациентов с исходным кальциевым счетом >30 было наблюдалось его увеличение как при применении солей кальция, так и севеламера гидрохлорида. Однако у больных, получавших соли кальция, он увеличивался быстрее и в большей степени, чем при лечении севеламера гидрохлоридом (р=0,056 через 12 месяцев и р=0,01 через 18 месяцев; рис. 2).

Рис. 2. Медиана кальциевого счета в коронарных артериях у диализных больных, получавших севеламера гидрохлорид и соли кальция

Через 18 месяцев медиана увеличения кальциевого счета при лечении препаратами кальция в 11 раз превышала таковую при применении севеламера гидрохлорида (127 и 11, соответственно; р=0,01).

Сходные результаты были получены еще в одном исследовании у 183 взрослых больных, получавших лечение гемодиализом [27]. Изменения кальцификации коронарных артерий оценивали с помощью мультиспиральной компьютерной томографии через 12 месяцев после начала лечения севеламером или карбонатом кальция. Кальциевый счет в двух группах увеличился в среднем на 82 и 194, соответственно (р=0,001 между группами). Доля пациентов, у которых индекс кальцификации увеличился по крайней мере на 15%, была достоверно ниже в группе севеламера (35% и 59%, соответственно; р=0,002).

В некоторых исследованиях не было отмечено разницы прогрессирования кальцификации артерий при применении севеламера гидрохлорида и солей кальция [28]. Например, она была сопоставимой в исследовании CARE 2 на фоне интенсивного контроля уровней липидов [29]. Однако это исследование имело существенные ограничения, включая короткую длительность наблюдения (1 год) и высокую частоту досрочного прекращения лечения.

В одном исследовании влияние диеты, севеламера гидрохлорида и солей кальция на кальцификацию коронарных артерий сравнивали у 90 пациентов с ХБП 3-5 стадии, не получавших лечение гемодиализом [30]. Через 2 года индекс кальцификации коронарных артерий увеличился в группах пациентов, получавших низкофосфатную диету или диету и карбонат кальция, и не изменился у пациентов, которым проводилась терапия диетой и севеламера гидрохлоридом. Значительное снижение частоты развития кальцификации коронарных артерий и замедление ее прогрессирования при лечении севеламером у преддиализных пациентов с ХБП было также отмечено в рандомизированном дисследовании INDEPENDENT [31]. Развитие кальцификации коронарных артерий de novo наблюдали у 12,8% и 81,8% пациентов, получавших севеламера гидрохлорид и карбонат кальция, соответственно. Кроме того, в группе севеламера значительно чаще наблюдался регресс кальцификации коронарных артерий.

Таким образом, результаты большинства контролируемых клинических исследований показали, что лечение севеламера гидрохлоридом задерживает прогрессирование кальцификации коронарных артерий по сравнению с солями кальция у больных ХБП, получающих и не получающих почечную заместительную терапию. Кальцификация коронарных артерий — это «суррогатный» критерий эффективности фосфат-свя зывающих препаратов, так как возможность улучшения клинических исходов на фоне замедления ее прогрессирования у диализных пациентов считается недоказанной [3]. Тем не менее, в исследовании RIND исходный индекс кальцификации коронарных артерий у диализных пациентов был достоверным предиктором смерти от любых причин (при многофакторном анализе вносили поправку на возраст, расу, пол и наличие сахарного диабета) [32].

Смертность. В самом крупном 3-летнем рандомизированном исследовании DCOR изучали заболеваемость и смертность у 2103 диализных пациентов, получавших севеламер или соли кальция [33]. Достоверной разницы общей или сердечно-сосудистой смертности между двумя группами не выявили, хотя риск смерти снизился в группе севеламера на 7%. Лечение этим препаратом ассоциировалось со снижением частоты госпитализаций по любым причинам и длительности пребывания в стационаре [34]. В выборке больных >65 лет в группе севеламера выявили достоверное снижение общей смертности на 23% (р=0,02) по сравнению с таковой у пациентов, получавших соли кальция. Севеламер гидрохлорид имел также достоверное (р=0,02) преимущество перед солями кальция по влиянию на смертность у пациентов, которые продолжали лечение в течение по крайней 2 лет (43% выборки).

По данным анализа post hoc результатов исследования RIND, в течение 44 месяцев (медиана) смертность в группе пациентов, получавших севеламера гидрохлорид, была ниже, чем в группе пациентов, которым проводилось лечение солями кальция (5,3 и 10,6 на 100 пациенто-лет, соответственно; р=0,05) [32]. При многофакторном анализе было показано, что лечение солями кальция ассоциируется с более высоким риском смерти (отношение шансов 3,1. 95% доверительный интервал 1,23-7,61) (рис. 3).

Рис. 3. Скорректированная выживаемость при лечении солями кальция и севеламером. Многофакторный анализ с поправкой на возраст, расу, пол, диабет, сердечно-сосудистые заболевания, С-реактивный белок, альбумин, исходный кальциевый счет.

В ретроспективном когортном исследовании сравнивали 2-летнюю выживаемость у 1377 диализных пациентов, получавших препараты кальция или севеламера гидрохлорид [35]. Выживаемость оценивали с помощью модели регрессии Кокса с поправкой на возраст, пол, расу, семейное положение, регион, наличие диабета, артериальной гипертонии и индекс коморбидности. Лечение севеламера гидрохлоридом ассоциировалось со снижением риска смерти от любых причин на 33% по сравнению с препаратами кальция.

Недавно были опубликованы результаты 2-летнего рандомизированного исследования INDEPENDENT, в котором сравнивали смертность у 212 пациентов с ХБП 3-4 стадии, получавших севеламер или карбонат кальция [31]. В группе севеламера гидрохлорида выявили достоверное снижение общей смертности по сравнению с группой сравнения. По мнению авторов исследования, благоприятный эффект севеламера мог частично объясняться его плейотропными эффектами (снижение уровня С-реактивного белка, общего холестерина и холестерина ЛНП).

Таким образом, результаты клинических исследований свидетельствуют о том, что лечение севеламера гидрохлоридом может привести к снижению общей смертности диализных больных по сравнению с солями кальция, хотя для подтверждения этого эффекта необходимы дополнительные исследования.

Заключение
Одной из причин повышенной общей и сердечно-сосудистой смертности у больных ХБП являются МКН, которые встречаются практически у всех пациентов, получающих лечение диализом и сопровождаются развитием и прогрессированием кальцификации коронарных и других артерий. Ключевую роль в развитии МКН играют задержка фосфатов и гиперфосфатемия. В крупных эпидемиологических исследованиях установлено, что гиперфосфатемия повышает риск смерти от любых и сердечно-сосудистых причин. Для контроля сывороточных уровней фосфатов у больных ХБП, находящихся на диализе, применяют низкофосфатную диету и фосфат-связыващие препараты. Результаты клинических исследований показали, что лечение солями кальция не только приводит к увеличению сывороточных уровней кальция и частоты гиперкальциемии, но и может способствовать развитию кальцификации коронарных и других артерий. В связи с этим в руководстве KDIGO и национальном руководстве по МКН-ХБП рекомендуется избегать применения солей кальция у пациентов с гиперкальциемией или выраженной кальцификацией артерий. В то же время бескальциевый фосфат-связывающий препарат севеламера гидрохлорид задерживал прогрессирование кальцификации артерий у больных ХБП, получавших и не получавших почечную заместительную терапию. В некоторых исследованиях было выявлено снижение общей смертности больных ХБП при лечении севеламера гидрохлоридом. В самом крупном исследовании этот эффект проявлялся у пожилых пациентов с ХБП 5Д стадии, а также при более длительном применении препарата (более 2 лет). Представляет интерес изучение нарушений обмена фосфатов на додиализных стадиях ХБП. Можно предположить, что диета с ограничением фосфатов и применение препаратов, связывающих фосфаты, на ранних стадиях ХБП будет способствовать профилактике сердечно-сосудистых осложнений у таких больных.

Литература
1. Foley R., Parfrey P., Sarnak M. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am. J. Kidney Dis., 1998, 32, S112-S119.
2. Chonchol M., Whittle J., Desbien A. et al. Chronic kidney disease is associated with angiographic coronary artery disease. Am. J. Nephrol., 2008, 28 (2), 354-360.
3. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int., 2009, 76 (Suppl. 113), S1-S130.
4. Blacher J., Guerin A., Pannier B. et al. Arterial calcifications, arterial stiffness, and cardiovascular risk in end-stage renal disease. Hypertension, 2001, 38, 938-942. 5. Roman-Garcia P., Carrillo-Lopez N., Cannata-Andia J. Pathogenesis of bone and mineral related disorders in chronic kidney disease: Key role of hyperphosphatemia. J. Ren. Care, 2009, 35 (Suppl. 1), 34-38.
6. Милованова Л.Ю., Николаев А.Ю., Милованов Ю.С. Гиперфосфатемия как фактор риска сердечно-сосудистых заболеваний у больных ХПН на хроническом гемодиализе. Нефрол. диал., 2002, 2 (4), 113-117.
7. Block G., Klassen P., Lazarus J. et al. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J. Am. Soc. Nephrol., 2004, 15 (8), 2208-2218.
8. Young et al. 2005
9. Национальные рекомендации по минеральным и костным нарушениям при хронической болезни почек. Российское диализное общество (май 2010 г.). Нефрология и диализ, 2011, 13 (1), 33-51.
10. Милованова Л.Ю., Милованов Ю.С., Козловская Л.В. Нарушения фосфорно-кальциевого обмена при хронической болезни почек III-V стадией. Клин. нефрология, 2011, 1, 58-68.
11. Berndt Т., Kumar R. Novel mechanisms in the regulation of phosphorus homeostasis. Physiology (Bethesda), 2009, 24, 17-25.
12. Gupta D., Brietzke S., Hay M. et al. Phosphate metabolism in cardiorenal metabolic disease. Cardiorenal. Med., 2011, 1, 261-270.
13. Добронравов В.А. Современный взгляд на патофизиологию вторичного гиперпаратиреоза: роль фактора роста фибробластов 23 и Klotho. Нефрология, 2011, 4, 11-20.
14. Милованов Ю.С., Козловская Л.В., Бобкова И.Н. и др. Механизмы нарушения фосфорно-кальциевого гомеостаза в развитии сердечно-сосудистых осложнений у больных хронической болезнью почек. Роль фактора роста фибробластов-23 и Klotho. Тер. архив, 2010, 6, 66-72.
15. Tentori F., Blayney M., Albert J. et al. Mortality risk for dialysis patients with different levels of serum calcium, phosphorus, and PTH: the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am. J. Kidney Dis., 2008, 52, 519-530.
16. Sowers K., Hayden M. Calcific uremic arteriolopathy: pathophysiology, reactive oxygen species and therapeutic approaches. Oxid. Med. Cell. Longev., 2010, 3, 109-121.
17. Томилина Н.А., Волгина Г.В., Бикбов Б.Т. Кальцификация клапанов сердца у больных с терминальной хронической почечной недостаточностью. Росс. кардиологический журнал, 2003, 2, 23-29.
18. Bellasi A., Ferramosca E., Muntner P. et al. Correlation of simple imaging tests and coronary artery calcium measured by computed tomography in hemodialysis patients. Kidney Int., 2006, 70, 1623-1628.
19. Kestenbaum B., Sampson J., Rudser K. et al. Serum phosphate levels and mortality risk among people with chronic kidney disease. J. Am. Soc. Nephrol., 2005, 16, 520-528.
20. Block G., Hulbert-Shearon T., Levin N. et al. Association of serum phosphorus and calcium X phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am. J. Kidney Dis., 1998, 31, 607-617.
21. Rodriguez-Benot A., Martin-Malo A., Alvarez-Lara M. et al. Mild hyperphosphatemia and mortality in hemodialysis patients. Am. J. Kidney Dis. , 2005, 46, 68-77.
22. Ganesh S., Stack A., Levin N. et al. Association of elevated serum PO(4), Ca X PO(4) product, and parathyroid hormone with cardiac mortality risk in chronic hemodialysis patients. J. Am. Soc. Nephrol., 2001, 12, 2131-2138.
23. Giachelli C. Vascular calcification mechanisms. J. Am. Soc. Nephrol., 2004, 15, 2959-2964.
24. Mucsi I,, Hercz G. Control of serum phosphate in patients with renal failure-new approaches. Nephrol. Dial. Transplant., 1998, 13 (10), 2457-2460.
25. Chertow G., Burke S., Raggi P. Sevelamer attenuates the progression of coronary and aortic calcification in hemodialysis patients. Kidney Int., 2002, 62, 245-252.
26. Block G., Spiegel D., Ehrlich J. et al. Effects of sevelamer and calcium on coronary artery calcification in patients new to hemodialysis. Kidney Int., 2005, 68, 1815-1824.
27. Kakuta T., Tanaka R., Hyodo T. et al. Effect of sevelamer and calcium-based phosphate binders on coronary artery calcification and accumulation of circulating advanced glycation end products in hemodialysis patients. Am. J. Kidney Dis., 2011, 57 (3), 422-431.
28. Barreto D., Barreto F., de Carvalho A. et al. Phosphate binder impact on bone remodeling and coronary calcification-results from the BRiC study. Nephron Clin. Pract., 2008, 110, 273-283.
29. Qunibi W., Moustafa M., Muenz L. et al. A 1-year randomized trial of calcium acetate versus sevelamer on progression of coronary artery calcification in hemodialysis patients with comparable lipid control: the Calcium Acetate Renagel Evaluation-2 (CARE-2) study. Am. J. Kidney Dis., 2008, 51, 952-965.
30. Russo D., Miranda I., Ruocco C. et al. The progression of coronary artery calcification in predialysis patients on calcium carbonate or sevelamer. Kidney Int., 2007, 72, 1255-1261.
31. Di Iorio B., Bellasi A., Russo D. on behalf of the INDEPENDENT Study Investigators Mortality in Kidney Disease Patients Treated with Phosphate Binders: A Randomized Study. Clin. J. Am. Soc. Nephrol., 2012, 7 (3), 487-493.
32. Block G., Raggi P., Bellasi A. et al. Mortality effect of coronary calcification and phosphate binder choice in incident hemodialysis patients. Kidney Int., 2007, 71, 438-441.
33. Suki W., Zabaneh R., Cangiano J. et al. Effects of sevelamer and calcium-based phosphate binders on mortality in hemodialysis patients. Kidney Int., 2007, 72, 1130-1137.
34. St Peter WL, Liu J, Weinhandl E, Fan Q. A comparison of sevelamer and calcium-based phosphate binders on mortality, hospitalization, and morbidity in hemodialysis: a secondary analysis of the Dialysis Clinical Outcomes Revisited (DCOR) randomized trial using claims data. Am. J. Kidney Dis., 2008, 51, 445-454.
35. Borzecki A., Lee A., Wang S. et al. Survival in end stage renal disease: calcium carbonate vs. sevelamer. J. Clin. Pharmacy & Ther., 2007, 32, 617-624.

Читайте также:  Чем лечить мокрый грибок между пальцев народными средствами

источник

При хронической почечной недостаточности для выведения из организма излишков жидкости, продуктов белкового обмена, отходов обменных процессов, токсинов успешно применяется гемодиализ. Во время процедуры кровь пациента перекачивается специальным аппаратом — диализатором, мембранами и диализирующей жидкостью. Процедура проводится регулярно, несколько раз в неделю. Почки пациента, практически не функционируют, организм накапливает различные вредные вещества. Уменьшить неприятные последствия возможно, придерживаясь определенных правил, ограничений в питании.

· уменьшение потребляемой жидкости;

· сокращение поступающей поваренной соли;

· увеличение доли белковой пищи;

· повышение калорийности блюд;

· ограничение потребления пищи с большим содержанием калия, фосфора;

Для нормального функционирования организму человека необходимы различные микроэлементы. При увеличении их концентрации в крови человека, они наносят вред различным системам, органам. Таким элементом является фосфор.

В жизнедеятельности и функционировании организма фосфор участвует в следующих процессах:

· формирование скелетных костей. Кости человека содержат 86% фосфора;

энергообмен клеток. Процессы энергообмена клеток, мышц, тканей протекают с помощью АТФ — кислоты и креатинфосфата. АТФ — аккумулятор энергии;

· обмен жиров. Соединения фосфора фосфатазы – ферменты, отвечающие за химические реакции, протекающие в клетках;

· синтез белка. С белками фосфаты образуют материал формирования оболочек клеток – лецитин;

· работа мышечной ткани. За движения человека отвечают фосфорные соединения. Фосфор — составляющая фосфолипидов и фосфопротеинов в мембранах клеток;

· работа мозга. Фосфор имеет большое значение для мышления, участвуя в передаче нервных импульсов;

· дыхание, брожение. Основные жизненные функции невозможны без фосфорной кислоты;

· усвоение витаминов. Фосфор, запуская ферментные реакции, способствует образованию их активных форм;

· нормализация кислотно-щелочного баланса;

Избыток фосфора приносит негативные последствия. Отвечая за повышение его содержания в крови, включатся паращитовидные железы, уменьшающие концентрацию. Побочный эффект работы желез — уменьшение содержания кальция в костях, что приводит к их хрупкости. Избыток фосфора нарушает усвояемость магния, вызывая мигрени, аритмии, боли в спине. К сожалению, во время сеанса гемодиализа, фосфор, практически не выводится из организма. Основное его накопление происходит в тканях.

Для успешного выведения хорошо зарекомендовал себя ежедневный гемодиализ, ухудшающий качество жизни пациента, обреченного на непрерывное лечение. Выход – прием специальных препаратов, связывающих фосфор, замедляющих всасывание кишечником.

Препараты ацетат кальция, нефросорб, ренацет, севеламер, алюдрокс, лантан, захватывают фосфаты в кишечнике, предотвращая их попадание в кровь. Соединяясь в кишечнике, кальций и фосфаты выпадают в осадок и выводятся с калом. Среди этих препаратов ацетат кальция является самым старым, проверенным и эффективным. Он наилучшим образом нормализует фосфорно-кальциевый обмен.

Существует несколько правил, обязательных при приеме препаратов:

· прием препаратов происходит строго во время еды;

· нельзя принимать лекарства после еды;

· необходимо носить несколько таблеток препарата на случай незапланированного перекуса.

Прием лекарств позволит облегчить состояние, поддержать организм.

источник

Фосфор является не только одним из самых распространённых элементов земной коры (его содержание составляет 0,08—0,09 % её массы, а концентрация в морской воде 0,07 мг/л), но также фосфор присутствует в каждой клетке тела, и, вместе с кальцием, фосфор является наиболее распространенным минералом в организме.
Фосфор — макроэлемент, который составляет 1% от общего веса тела человека, он требуется каждой клетке организма для нормального функционирования. Фосфор присутствует в живых клетках в виде орто- и пирофосфорной кислот, входит в состав нуклеотидов, нуклеиновых кислот, фосфопротеидов, фосфолипидов, коферментов, ферментов. Фосфор, в виде фосфатных соединений, присутствует в клетках и тканях по всему телу, но большая его часть (около 85%) сконцентрирована в костях и зубах (в форме соли фосфата кальция).
Основную роль в превращениях соединений фосфора в организме человека и животных играет печень. Обмен фосфорных соединений регулируется гормонами и витамином D.

● Основной функцией фосфора в организме является формировании костей и зубов. Кости человека состоят из гидроксилапатита 3Са3(РО4)3•Ca(OH)2. В состав зубной эмали входит фторапатит.
● Фосфор в виде фосфолипидов (например, фосфатидилхолина) является основным структурным компонентом клеточных мембран. Фосфор необходим для роста и регенерации всех тканей и клеток организма. Фосфор также помогает снизить боль в мышцах после тяжелой тренировки.
● Фосфор в виде фосфорилированных соединений, таких как аденозинтрифосфат ( АТФ ) и креатинфосфат играет исключительно важную роль в обмене энергии и веществ в организмах. Эти фосфорилированные соединения в первую очередь известны как универсальный источник энергии для всех биохимических процессов, протекающих в живых системах.
● Нуклеиновые кислоты (ДНК и РНК), отвечающие за хранение и передачу генетической информации, имеют длинные цепи фосфат-содержащих молекул.
● Фосфор также необходим для сбалансированного использования организмом витаминов и минералов, в том числе витамин D, йод, магний и цинк .
● Фосфор способствует поддержанию нормального кислотно-щелочного баланса ( рН )
● Фосфорсодержащие молекулы 2,3-дифосфоглицерат (2,3-ДФГ) связывается с гемоглобином эритроцитов и облегчают доставку кислорода к тканям тела.
● Фосфор помогает функционированию почек отфильтровать шлаки.
● Фосфор играет важную роль в работе сердечно-сосудистой и нервной систем.

Суточная потребность человека в фосфоре 800—1500 мг. При недостатке фосфора в организме развиваются различные заболевания костей.
Согласно рекомендациям (RDA) Института Медицины Национальной академии наук США
диетическое потребление фосфора по возрастным категориям:

От 0 до 6 месяцев: 100 мг в сутки
От 7 до 12 месяцев: 275 мг в сутки
От 1 до 3 лет: 460 мг в сутки
От 4 до 8 лет: 500 мг в сутки
От 9 до 18 лет: 1250 мг в сутки
Взрослые: 700 мг в сутки
Беременные и кормящие женщины:
Моложе 18: 1250 мг в сутки
Старше 18: 700 мг в сутки
Верхний допустимый уровень потребления фосфора составляет 3-4 г в сутки.

Поскольку фосфор настолько широко распространен в продуктах питания, пищевая недостаточность фосфора или дефицит фосфора (гипофосфатемия ) обычно наблюдается только в случаях почти полного голодания. Однако, некоторые заболевания, такие как диабет, алкоголизм, болезнь Крона, целиакия могут привести к падению уровня фосфора в организме. Кроме того понизить уровень фосфора могут некоторые лекарственные средства (антациды и диуретики (мочегонные)).

Симптомы дефицита фосфора
● потеря аппетита, слабость, усталость, изменение веса
● беспокойство, раздражительность, нерегулярное дыхание
● боль в костях и суставах, хрупкость костей, онемение, покалывание в конечностях
● рахит (у детей), остеомаляция (у взрослых)
● повышенная восприимчивость к инфекциям, анемия

Взаимодействия, снижающие уровень фосфора в организме

● Алкоголь способствует выщелачиванию фосфора из костей, тем самым вызывает понижение уровня фосфора.
● Антациды — лекарственные препараты, предназначенные для лечения кислотозависимых заболеваний желудочно-кишечного тракта посредством нейтрализации соляной кислоты, входящей в состав желудочного сока. Антациды, содержащие алюминий, кальций, или магния (например, алмагель, маалокс, Mylanta, Riopan и Alternagel) могут связывать фосфаты в кишечнике препятствуя организму поглощать фосфор. Длительное использование таких препаратов может привести к низким уровням фосфора (гипофосфатемия).
● Некоторые противосудорожные препараты (в том числе фенобарбитал, карбамазепин, Tegretol) могут снизить уровни фосфора и увеличение уровня щелочной фосфатазы, фермента, который способствует удалению фосфата из организма.
● Гиполипидемические препараты (холестирамин (квестран), колестипол (колестид)), снижающие уровень холестерина, могут уменьшить пероральную абсорбцию фосфатов с пищей или добавками. Поэтому фосфатные пищевые добавки следует принимать как минимум за 1 час до или через 4 часа после приема этих препаратов.
● Кортикостероиды, включая преднизолон или метилпреднизолон (Medrol), способствуют увеличению уровня фосфора в моче.
● Высокие дозы инсулина может снизить уровни фосфора в людей с диабетическим кетоацидозом (состояние, вызванное тяжелой недостаточностью инсулина).
● Использование пищевых добавок фосфора вместе с калийсберегающими диуретиками (спиронолактон (Aldactone), триамтерен (Dyrenium)) может привести к гиперкалиемии (переизбыток калия в крови) и как результат к нарушению сердечного ритма (аритмии).
● Ингибиторы АПФ – препараты для лечения высокого кровяного давления могут привести к снижению уровня фосфора. Они включают в себя: Benazepril (Lotensin), Каптоприл (капотен) , Эналаприл (Vasotec) , Fosinopril (моноприл) , Лизиноприл (Zestril, Принивил), Quinapril (Accupril), Рамиприл (Altace).
● Другие препараты могут снизить уровни фосфора. Циклоспорин (используются для подавления иммунной системы), сердечные гликозиды (дигоксин), гепарины (разжижающие кровь препараты) и нестероидные противовоспалительные лекарственные средства (такие как ибупрофен или Адвил). Заменители соли также содержат высокие уровни калия и длительном применении могут вызвать снижение уровня фосфора.

Наличие слишком большого количества фосфора в организме на самом деле более тревожный симптом, чем его дефицит.
Высокий уровень фосфора в крови возможен только у людей с тяжелыми заболеваниями почек или тяжелой дисфункцией регуляции кальция, и может сочетаться с кальцинозом (обызвествление, отложение солей кальция в мягких тканях).
Высокий уровень фосфора в организме возможен при чрезмерном потреблении фосфора и малом потреблении кальция.
Некоторые исследования показывают, что более высокое потребление фосфора связано с повышенным риском сердечно-сосудистых заболеваний. Поскольку количество фосфора вы есть повышается, так что делает потребность в кальции. Сбалансированность между кальцием и фосфором необходима для правильной плотности костей и профилактики остеопороза.

Фосфор содержится в пищевых продуктах животного происхождения, потому что это важнейший компонент животных белков. Молочные продукты, мясо, птица, рыба, яйца особенно богаты фосфором.
Фосфор во всех семенах растений (фасоль, горох, злаки, крупы и орехи) присутствует в форме фитиновой кислоты или фитатов. Фитиновая кислота снижает биодоступность общего фосфора, кальция, магния, цинка и многих других минералов. Только около 50% фосфора из фитатов доступно для человека, потому что в организме не хватает фермента (фитазы), который способен освободить фосфор из фитата.
Зерновые, так же как и бобовые, содержат фитиновую кислоту в целом зерне, но больше всего в его оболочках. Эта кислота соединяется с некоторыми минералами, присутствующими в кишечнике, образуя нерастворимые фитаты. Это препятствует всасыванию минералов в нашем организме (говорят о деминерализации). К счастью, под действием фитазы (фермента, который активируется в хлебной закваске) фитиновая кислота разрушается. Чем выше процент очистки муки, тем больше содержание фитиновой кислоты. Чем больше тесто ферментируется, тем больше у фитазы закваски времени для высвобождения минералов из связи с фитиновой кислотой. Кроме того, процесс брожения теста представляет собой как бы процесс пищеварения, который начинается за пределами желудка. Хлеб на закваске легче переваривается, чем хлеб на дрожжах, который в процессе подъёма теста подвергается спиртовому брожению.
Фосфор также является компонентом многих пищевых добавок полифосфатов и присутствует в большинстве безалкогольных напитков как фосфорная кислота.
Фрукты и овощи содержат лишь небольшое количество фосфора.

Содержание фосфора в продуктах питания:
Молоко, обезжиренное, стакан 240мл — 247 мг
Йогурт, простой обезжиренный, стакан 240мл — 385 мг
Сыр моцарелла, 100 г — 400 мг
Яйцо вареное, 1 шт — 104 мг
Говядина приготовленная, 100г — 173 мг
Курица приготовленная, 100г — 155 мг
Индейка приготовленная, 100г — 173 мг
Рыба, палтус, приготовленная, 100г — 242 мг
Рыба, лосось приготовленная, 100г — 252 мг
Хлеб, цельной пшеницы, 1 ломтик — 57 мг
Хлеб, обогащенный белый, 1 ломтик — 25 мг
Газированные напитки колы , 350 мл — 40 мг
Миндаль, 23 орехов (30 г) — 134 мг
Арахис, 30 г — 107 мг
Чечевица, 1/2 чашки, приготовленная — 178 мг

Читайте также:  Народные средства от кандидоза глаз

Сбалансированность кальция и фосфора
Диетологи рекомендуют баланс кальция и фосфора в рационе. Например, типичная западная диета, содержит приблизительно 2 — 4 раза больше фосфора, чем кальция. Мясо и птица содержат 10 — 20 раз больше фосфора, чем кальция, и газированные напитки, такие как кола содержат 500 мг фосфора в одной порции. Когда в организме больше фосфора, чем кальция, происходит вымывание кальция из костей. Это может привести к остеопорозу (хрупкость костей) и к разрушению зубной эмали и болезни десен.

Кальций и витамин D
За регулирование баланса кальция и фосфора отвечает паратиреоидный гормон (ПТГ) и витамин D. Небольшое снижение уровня кальция в крови (например, в случае недостаточного потребления кальция) приводит к повышенной секреции ПТГ. ПТГ стимулирует превращение витамина D в его активную форму (кальцитриол) в почках. Повышение уровня кальцитриола в свою очередь, приводит к повышению кишечной абсорбции кальция и фосфора. Паратиреоидный гормон и витамин D стимулируют резорбцию (разрушение) костной ткани, в результате чего происходит выпуск костной ткани (кальция и фосфата) в кровь, повышенная экскреция фосфора с мочой. В результате повышенного выделения фосфора с мочой уровень кальция в крови повышается до нормального.

Диета с высоким содержанием фруктозы
Исследование, в котором принимали участие 11 взрослых мужчин, выявило, что диета с высоким содержанием фруктозы (20% от общей калорийности) привела к увеличению фосфора в моче и отрицательному балансу фосфора в организме (ежедневные потери фосфора превышали суточную дозу в рационе питания). Этот эффект был более выраженным, когда в рационе было также низкое содержание магния.

Элементный фосфор (phosphorus) представляет собой белое или желтое воскообразное вещество, которое окисляется с бледно-зелёным свечением (хемилюминесценция) при контакте с воздухом. Фосфор весьма ядовит (вызывает поражение костей, костного мозга, некроз челюстей). Летальная доза белого фосфора для взрослого мужчины составляет 0,05—0,1 г. В медицине элементный фосфор используется только в гомеопатии.
В качестве пищевых добавок фосфора применяют неорганические фосфаты, которые не токсичны при обычных дозах:
● Фосфат монокалия или одноосновный фосфат калия КН2РО4
● Двухосновный фосфат калия K2HPO4
● Одноосновный фосфат натрия NaH2PO4
● Двухосновный фосфат натрия Na2НРО4
● Ортофосфат натрия или трехосновный фосфат натрия Na34
● Фосфатидилхолин
● Фосфатидилсерин

Большинству людей не нужно принимать добавки фосфора, необходимое его количество здоровый организм получает из пищи.
Иногда спортсмены используют фосфатные добавки перед соревнованиями или тяжелыми тренировками, чтобы уменьшить усталость и мышечную боль.
Фосфаты также используются в качестве слабительных клизм.

Меры предосторожности
Из-за возможных побочных эффектов и взаимодействий с лекарственными препаратами вы должны принимать пищевые добавки только под контролем знающего врача.
Слишком большое количество фосфатов могут вызвать диарею, способствовать отложению солей кальция в любых мягких тканях или органах (кальциноз), влиять на способность организма использовать железо , кальций, магний и цинк .

При хронической почечной недостаточности для выведения из организма излишков жидкости, продуктов белкового обмена, отходов обменных процессов, токсинов успешно применяется гемодиализ. Во время процедуры кровь пациента перекачивается специальным аппаратом — диализатором, мембранами и диализирующей жидкостью. Процедура проводится регулярно, несколько раз в неделю. Почки пациента, практически не функционируют, организм накапливает различные вредные вещества. Уменьшить неприятные последствия возможно, придерживаясь определенных правил, ограничений в питании.

· уменьшение потребляемой жидкости;

· сокращение поступающей поваренной соли;

· увеличение доли белковой пищи;

· повышение калорийности блюд;

· ограничение потребления пищи с большим содержанием калия, фосфора;

Для нормального функционирования организму человека необходимы различные микроэлементы. При увеличении их концентрации в крови человека, они наносят вред различным системам, органам. Таким элементом является фосфор.

В жизнедеятельности и функционировании организма фосфор участвует в следующих процессах:

· формирование скелетных костей. Кости человека содержат 86% фосфора;

энергообмен клеток. Процессы энергообмена клеток, мышц, тканей протекают с помощью АТФ — кислоты и креатинфосфата. АТФ — аккумулятор энергии;

· обмен жиров. Соединения фосфора фосфатазы – ферменты, отвечающие за химические реакции, протекающие в клетках;

· синтез белка. С белками фосфаты образуют материал формирования оболочек клеток – лецитин;

· работа мышечной ткани. За движения человека отвечают фосфорные соединения. Фосфор — составляющая фосфолипидов и фосфопротеинов в мембранах клеток;

· работа мозга. Фосфор имеет большое значение для мышления, участвуя в передаче нервных импульсов;

· дыхание, брожение. Основные жизненные функции невозможны без фосфорной кислоты;

· усвоение витаминов. Фосфор, запуская ферментные реакции, способствует образованию их активных форм;

· нормализация кислотно-щелочного баланса;

Избыток фосфора приносит негативные последствия. Отвечая за повышение его содержания в крови, включатся паращитовидные железы, уменьшающие концентрацию. Побочный эффект работы желез — уменьшение содержания кальция в костях, что приводит к их хрупкости. Избыток фосфора нарушает усвояемость магния, вызывая мигрени, аритмии, боли в спине. К сожалению, во время сеанса гемодиализа, фосфор, практически не выводится из организма. Основное его накопление происходит в тканях.

Для успешного выведения хорошо зарекомендовал себя ежедневный гемодиализ, ухудшающий качество жизни пациента, обреченного на непрерывное лечение. Выход – прием специальных препаратов, связывающих фосфор, замедляющих всасывание кишечником.

Препараты ацетат кальция, нефросорб, ренацет, севеламер, алюдрокс, лантан, захватывают фосфаты в кишечнике, предотвращая их попадание в кровь. Соединяясь в кишечнике, кальций и фосфаты выпадают в осадок и выводятся с калом. Среди этих препаратов ацетат кальция является самым старым, проверенным и эффективным. Он наилучшим образом нормализует фосфорно-кальциевый обмен.

Существует несколько правил, обязательных при приеме препаратов:

· прием препаратов происходит строго во время еды;

· нельзя принимать лекарства после еды;

· необходимо носить несколько таблеток препарата на случай незапланированного перекуса.

Прием лекарств позволит облегчить состояние, поддержать организм.

Фосфор – внутриклеточный анион, который участвует во многих обменных процессах организма, в формировании нервной и костной ткани, в поддержании кислотно-щелочного равновесия. Определение концентрации этого микроэлемента в сыворотке применяется в неврологии, эндокринологии, нефрологии, урологии, гастроэнтерологии. Интерпретация полученных значений производится с учетом результатов биохимического анализа крови, тестов на электролиты и гормоны в сыворотке. Исследование необходимо при выявлении заболеваний костной и нервной систем, патологий почек, желудочно-кишечного тракта и паращитовидных желез, а также в ходе их лечения для отслеживания динамики. Забор крови выполняется из вены. Для исследования используется колориметрический метод с молибдатом аммония. При отсутствии нарушений полученные значения находятся в промежутке от 0,81 до 1,45 ммоль/л. Срок проведения анализа – 1 день.

Фосфор – внутриклеточный анион, который участвует во многих обменных процессах организма, в формировании нервной и костной ткани, в поддержании кислотно-щелочного равновесия. Определение концентрации этого микроэлемента в сыворотке применяется в неврологии, эндокринологии, нефрологии, урологии, гастроэнтерологии. Интерпретация полученных значений производится с учетом результатов биохимического анализа крови, тестов на электролиты и гормоны в сыворотке. Исследование необходимо при выявлении заболеваний костной и нервной систем, патологий почек, желудочно-кишечного тракта и паращитовидных желез, а также в ходе их лечения для отслеживания динамики. Забор крови выполняется из вены. Для исследования используется колориметрический метод с молибдатом аммония. При отсутствии нарушений полученные значения находятся в промежутке от 0,81 до 1,45 ммоль/л. Срок проведения анализа – 1 день.

Фосфор в крови – показатель, отражающий количество неорганических фосфатов в сыворотке. Анализ выполняется для выявления нарушений метаболизма микроэлемента. Фосфор – основной анион внутри клеток организма, он обеспечивает нормальную работу нервной системы, присутствует в составе костной ткани, клеточных мембран и нуклеиновых кислот. Является компонентом аденозинтрифосфорной кислоты (АТФ) и креатинфосфата – соединений, аккумулирующих энергию и обеспечивающих протекание большинства биохимических реакций в организме. Состояния гипо- и гиперфосфатемии проявляются мышечной слабостью, судорогами, спутанностью сознания и обмороками.

В организм фосфор проступает вместе с пищей. Основные его источники – растительное масло, мясо, рыба, злаки и бобовые. Всасывание микроэлемента происходит в тонком отделе кишечника. Распределяется он при участии паратгормона, кальцитонина и витамина D. В костях и зубах содержится до 80% всего фосфора, в мышечной ткани – около 10%, в плазме крови – 1%. Организм регулирует уровень фосфатов через процессы всасывания в тонкой кишке и выведения через почки.

Определение концентрации неорганического фосфора производится в сыворотке крови и в порции суточной мочи. Анализ выполняется колориметрическим методом, часто в качестве реактива используется молибдат аммония. Значимо соотношение уровня кальция в крови, неорганического фосфора в крови и в моче. Результаты находят широкое применение в урологической, нефрологической, эндокринологической и гастроэнтерологической практике.

Анализ крови на фосфор назначается для оценки фосфорно-кальциевого обмена и выявления его нарушений при различных заболеваниях. Чаще всего исследование проводится в комплексе с тестом на уровень кальция, паратиреоидный гормон и витамин D. Симптомы гипо- и гиперфосфатемии схожи с проявлениями дефицита и избытка кальция – судороги, мышечная слабость, ощущение «мурашек» и покалывания в конечностях, спутанность сознания, дезориентация, обмороки. Поэтому основанием для анализа на фосфор в крови может быть отклонение результатов в тесте на кальций. Другими лабораторными признаками, указывающими на нарушение фосфорного обмена, являются шарообразная форма эритроцитов, гемолиз, снижение фагоцитарной функции лейкоцитов, укорочение времени жизни тромбоцитов, повышение уровня гидрокарбонатов, натрия, магния и кальция в моче.

Анализ на фосфор в крови показан при диагностике и контроле лечения заболеваний (состояний), сопровождающихся нарушением фосфорно-кальциевого обмена: сахарного диабета, нарушений кислотно-щелочного равновесия, остеопороза, болезней почек, желудочно-кишечного тракта и паращитовидных желез. С целью раннего выявления изменений электролитного баланса исследование проводится пациентам из групп риска: проходящим процедуры гемодиализа, находящимся в отделении интенсивной терапии, получающим питание внутривенно.

Анализ на фосфор в крови при подозрении на его дефицит может оказаться неинформативным при недавнем массивном повреждении тканей (ожогах, травмах) и при введении глюкозы. В этих случаях уровень фосфатов в крови понижается из-за их перехода в клетки тканей. Из-за невозможности забора крови исследование не проводится пациентам с выраженной анемией и гипотонией, нарушениями гемостаза, в состоянии психического и моторного возбуждения. Преимуществом данного исследования является простота и экономичность процедуры анализа.

Перед сдачей крови на исследование фосфора специальной подготовки не требуется. Процедура проводится в утренние часы, натощак. Если забор выполняется после еды, результаты окажутся ложно завышенными. За полчаса нужно не курить, не нагружать организм физически, избегать стресса. Многие лекарства влияют на уровень фосфора в крови, поэтому об их использовании необходимо предупредить врача, назначающего анализ.

Забор крови выполняется, как правило, из локтевой вены с непродолжительным наложением жгута и без мышечной нагрузки. Материал хранится при комнатной температуре и в течение 1-3 часов направляется в лабораторию. После центрифугирования полученная сыворотка исследуется фотоколориметрическим методом, основанном на способности фосфора взаимодействовать с молибдатом аммония, в результате чего образуется фосфорно-молибденовая кислота, которая восстанавливается до молибденового синего с яркой окраской. По степени окрашенности раствора определяется количество фосфора в образце. В стандартном режиме работы лаборатории проведение исследования занимает не более 1 дня.

В норме наиболее высокие показатели фосфора в крови определяются у детей до 2 лет – 1,54-2,16 ммоль/л. В возрасте от 2 до 12 лет референсные значения несколько снижаются и составляют 1,45-1,78 ммоль/л, у взрослых – 0,87-1,45 ммоль/л. После 60 лет количество фосфора в крови несколько уменьшается, но не выходит за рамки нижних значений нормы. Физиологическое снижение концентрации электролита в крови происходит при интенсивном восстановлении и росте тканей: в подростковом возрасте, во время заживления переломов, в период после ожога.

Гиперфосфатемия зачастую вызывается нарушением работы почек и уремией. Причинами высокого уровня фосфора в крови могут быть хроническая или острая почечная недостаточность, пиелонефрит. При гормональных и метаболических нарушениях – гипопаратиреозе, псевдогипопаратиреозе, диабетическом кетоацидозе – происходит усиление обратного всасывания электролитов из первичной мочи, количество фосфора в плазме растет. Среди других патологий гормональной системы, способных стать причиной повышения уровня фосфора в крови – болезнь Аддисона, акромегалия, гипертиреоз. Перераспределение микроэлемента с выходом в кровоток происходит при остеопорозе, остеосаркомах, метастатических поражениях костей, миеломной болезни, рабдомиолизе, гемолизе и злокачественной гипертермии. К увеличению количества фосфора в крови приводит передозировка фосфорсодержащих препаратов и витамина D, прием анаболических стероидов, бета-блокаторов, фуросемида, гипотиазида, гормона роста.

Частой причиной гипофосфатемии или пониженного уровня фосфора в крови является его усиленное выведение из организма при эндокринных и почечных патологиях: синдроме Фанкони, тубулопатиях, гиперкортицизме, сахарном диабете, первичном гиперпаратиреозе, дефиците витамина D или нечувствительности к нему клеток. Перераспределение микроэлемента в организме, при котором фосфор поступает внутрь клеток, и его количество в крови падает, происходит при метаболическом и дыхательном алкалозе, переходе от долгого катаболизма к анаболизму (после ожогов, введения глюкозы). Выраженные нарушения питания и мальабсорбция реже становятся причинами снижения уровня фосфора в крови, как правило, это происходит при хроническом голодании или парентеральном питании. Из лекарственных средств повлиять на уровень электролита могут антациды, глюкокортикоиды, анестетики, инсулин, эстрогены.

Фосфор в крови является важным показателем кальций-фосфорного обмена, который нарушается при заболеваниях костей, почек, желудочно-кишечного тракта и желез внутренней секреции. Исследование находит широкое применение в соответствующих областях медицинской практики: в гастроэнтерологии, нефрологии, травматологии, эндокринологии и других. При отклонении результатов от нормы лечение назначается врачом, направляющим на исследование и устанавливающим основной диагноз. Физиологическое понижение уровня фосфора в крови можно скорректировать путем изменения питания, введя в рацион источники микроэлемента: рыбу, яйца, крупы, бобовые, творог, сыр, мясо.

источник